On bashing genetic mailboxes

My Kandinsky-inspired cover came out in JACS last week. It’s about a protein chimera composed of a mutagenesis agent hitching a ride on an RNA polymerase to make mutations in specific genes. It reminded me of teenagers hanging out of the windows of moving cars, hitting mailboxes with baseball bats. (This metaphor probably dates me) In this case, the Shoulders Lab at MIT was clever enough to assign the teenagers (the mutagen) to a specific street. This image was made entirely on my iPad, which was a refreshing departure. Special thanks to George Howell Coffee in Newton, whose counter was the perfect height for drawing.


This cover design actually came up back in August when I was being interviewed by Carmen Drahl of Chemical and Engineering News at the ACS Boston meeting (seen here).


Obviously I didn’t say anything about the paper that hadn’t come out yet. She asked what my illustrations looked like, and I was explaining that the styles of my projects can vary dramatically. Even within this project, the other design we submitted for consideration for the cover was something much more typical of previous JACS covers (seen below). I was pretty surprised that they chose the wild card.


Hydra vulgaris is way better than it sounds

I had a nice surprise recently when this cover I made for Jacob T. Robinson's lab at Rice University came out. I didn't even know it had been chosen. It’s about immobilizing hydra (not the Marvel comics one) in a microfluidic device so its neurons can be poked and prodded. These little creatures are so cool. They stick to something at one end and then wave their little tentacles around, like a microscopic wacky wavy inflatable tube man. Or even better, like Dee from It's Always Sunny when she learns some new dance moves from one. 


Taking on the challenge of scale from a different angle

Once again, I was faced with the task of trying to convey both the macroscopic and molecular in one image. The last time I talked about this (two posts ago), I used a combination of 2D and 3D. This time on the molecular level I needed to show structures of polymers, highlighting the halogen bonds (the cracks in the wall as well as the theme of the issue). On the macroscopic level I needed the metal balls grinding together two different polymers that would then crystallize into a co-polymer in the solid state (that's a thing!?). So, I decided to use shadows, the idea being that by imagining a light source very low and close to the crystal, I could exaggerate the shadow size and show the molecular details of the halogen-bonded polymers. Obviously I took a little artistic license with the shadow of the powder falling into an atom, but that's what journal covers are for. 


Shortly after this project, I discovered Vincent Bal, who makes drawings from the shadows of everyday objects, incorporating the objects into the picture. I highly recommend checking these out unless you are an artist and you don't want to look at something that's going to make you want to quit forever, because they are that good:



Is Zen doodling on deadline defeating the purpose?

This illustration was done for a paper about paneth cells de-differentiating into stem cells. A sort of paradigm in stem cell research until recently was Waddington’s concept of the ‘epigenetic landscape’, which depicts cells rolling down a hill as they differentiate from stem cells to their terminal cell types. It was long believed until recently that cells could not reverse this process, or roll back up the hill. In the paper this image depicts, the authors demonstrate that activation of the Notch1 pathway directly or via irradiation induces Notch-dependent acquisition of a stem cell-like transcriptome. Like Sisyphus pushing his rock up the hill, Notch is seen here pushing the Paneth cell back up the ‘epigenetic landscape’ to a de-differentiated state with stem cell features. Taken together these results suggest that Notch may play an important role in the Sisyphean task of intestinal epithelial cell regeneration, particularly in cases of inflammation or injury. 


As my first attempt at Zen doodling I can tell you there was nothing Zen-like about it. But I learned a lot about making these and I would love to do more, with enough time. As an aside, the black and white version made great coloring pages for my kids. It occupied them for at least five minutes. No, I don't think they achieved "flow". 

2D meets 3D

One of the great benefits of having moved back to Boston almost a year ago is that I've been able to reconnect with old grad school friends, one of whom hired me for this cover art project. It's about using mRNA sequencing to monitor yeast fermentation, reporting back when the system is low in some key component such as, in this case, lipids. The idea for this image was conceived of most pleasantly over sandwiches on a roof garden in Kendall Square, as opposed to my usual forehead-to-desk-alone-in-my-office method.


One challenge that comes up in the majority of my projects in the problem of scale. How do you represent objects that differ in scale by several orders of magnitude together in one image? Sometimes artists will use a magnifying glass, or even just an inset. Sometimes I will use extreme perspective. For this project I decided to try something new, and used 2D for the molecular and microscopic, while using 3D for the macroscale objects. It's meant as a sort of wink to the audience, as in, I know mRNA is not as big as a computer monitor but I put it in a different dimension so it's okay, see? Like a parallel universe! Will you allow it?

The pneumonia project

What are the odds that while working on a project creating an image of a bacterial cell wall, I would come down with pneumonia? (It was back in November and I'm fine now.) Which is how this henceforth became known as the pneumonia project. And it is why I had to complete it largely in bed, using my iPad to "paint" it. But I actually liked it much better than how it was shaping up in my fancy 3D modeling program, so, thanks pneumonia. 


Which hiker are you?


I am definitely the one with the shoe untied and backpack unzipped. The hiking metaphor here is about varying levels of fitness for viral proteins accomplishing the task of protein folding. The fittest don't need any help from chaperones, while some are so unfit they get degraded before they even try folding. The idea for the hiking metaphor came from the first author of this paper, Angela Phillips, from Matthew Shoulders' lab at MIT. This was her original sketch for the concept:


In other news, we managed to have the O'Reilly Science Art holiday party of two this year. After a beer at the Cambridge Brewing Company, which I hadn't been to since I defended my thesis *mumblemumble* years ago, we saw Ladybird at the Kendall Square cinema. Because I am the boss. Or because the only showing of Star Wars The Last Jedi we could see started too late.

The Art of Basic Science #10

This painting came home from Kindergarten, and I was overcome with envy at this display of immune cells. Despite the fact that he had no idea that he was painting cells, I'd been out-science illustrated by my five year old, and so I thought this warranted a guest post by him again. 


The Art of Basic Science #9

Otto Warburg was a Nobel Prize-winning German biochemist who championed the hypothesis, which we now know as the Warburg Hypothesis, that cancer is caused by cells switching from the respiration of oxygen to the fermentation of sugar. This was in 1924. This criteria has largely been relegated to a correlation, since with the advent of molecular biology we learned about mutations in DNA. It has been a controversial topic, and for what it's worth, there has been a 10-fold increase in articles related to the Warburg Effect over the past ten years.

In this study (see reference below image), the authors link yeast cell fermentation to the oncogene Ras. They not only correlate an influx of glucose with accumulation of fructose 1,6-bisphosphate and activation of Ras, they show that fructose 1,6-bisphophate triggers activation of Ras. This supports the Warburg Effect within the modern context of at least one way in which we understand cancer to work. The image here incorporates glucose, fructose-1,6-bisphosphate, proliferating cells, and Ras into a portrait of Otto Warburg. Only after the completion of this illustration did I realize that he studied chemistry under Emil Fischer, known among other things for drawing sugars in, that's right, Fischer projections. Had he studied under English chemist Sir Norman Haworth then it would have been apropos indeed. So it goes.


Fructose-1,6-bisphosphate couples glycolytic flux to activation of Ras

Ken Peeters, Frederik Van Leemputte, Baptiste Fischer, Beatriz M. Bonini, Hector Quezada, Maksym Tsytlonok, Dorien Haesen, Ward Vanthienen, Nuno Bernardes, Carmen Bravo Gonzalez-Blas, Veerle Janssens, Peter Tompa, Wim Versées, and Johan M. Thevelein

Nat Commun. 2017; 8: 922.

Published online 2017 Oct 13. doi:  10.1038/s41467-017-01019-z

It's a banner day!

This week a paper came out in Science Translational Medicine that describes the use of hematopoietic stem and progenitor cells to treat Friedrich's Ataxia. Once they differentiate into mature microglia (see in yellow), they can actually transfer proteins that are missing in Friedrich's Ataxia to the host's cells. They also differentiate into other cells in other parts of the body to deliver these rescue proteins as well. Pretty amazing stuff. I made this image for the Cherqui Lab at UCSD, the authors of the study, and you can see the image (for now anyway) as the second in the scrolling banner images on both the Science Translational Medicine and Science homepages:




Brighter, stronger, tunier - new flourophores from the Lavis Lab

The Lavis Lab found that adding the four-membered functional group known as azetidines to the classic rhodamine dyes makes the brighter and more photostable. Even cooler, they found that by functionalizing the azetidines they could fine-tune the properties of the dyes, and gave them a whirl in cells too. 

The October installation of the Art of Basic Science is in the works. More soon!


The Art of Basic Science #8

This installment was inspired by the editorial illustrations of Rob Dobi (though this looks nothing like his), and the following paper from JACS, wherein the authors describe a cubane-based water oxidation catalyst. It is capable of oxygen evolution, a key component in artificial photosynthesis, which is a key component in playing nice with earth. 

Manganese-Cobalt Oxido Cubanes Relevant to Manganese-Doped Water Oxidation Catalysts.

Nguyen AISuess DLMDarago LEOyala PHLevine DSZiegler MSBritt RDTilley TD.

J Am Chem Soc. 2017 Apr 19;139(15):5579-5587. 


Can you really earn a living as a freelancer?

Alex Taylor of C&E News wrote this lovely piece about my path to scientific illustrator (click on image to go to full article), and as a result I have received some very nice e-mails from Ph.D. students who have been inspired by it. This was exactly the effect I hoped this article would have so I was delighted, but I also imagined that many people may have read this and wondered how feasible it really is to make a living doing this, and so I want to give the full story.

My annual income is in the ballpark of a postdoc salary, without the guaranteed monthly check (but also without the grueling hours). Having the safety net of a very supportive husband with a full time job has been key to this all going so swimmingly. Part of the reason for quitting teaching, in addition to the fact that I was having to turn away illustration work, was that it's hard enough to do two things well, but I found it nearly impossible to do three things well. So, when our first son was 18 months old, we looked at our finances and decided we could do it. And now four years later, with two kids aged 2 and 5, I'm very grateful for the flexibility this career allows. I am keenly aware that although I have worked very hard and made sacrifices for this career, I am lucky. It would have been much more of a struggle without the second income, and I thought that aspiring science illustrators ought to know that too. Freelance is not for the faint of heart, but I will say that at this point, I do not do any marketing, and I am simply fielding requests. I believe it would be more lucrative if I was more proactive, but I am steadily getting exactly the amount of work I want right now. This isn't due to a lack of ambition, but rather the constant fine-tuning of the ever-elusive work-family balance. 

That said, there are other more stable jobs in this industry than freelance. There are illustrators and illustration editors for scientific journals, graphic designers for biotech companies, scientific animation studios, textbook illustrators and much more. To help pave the way to some of these, there are masters programs like the Master of Science in Biomedical Visualization at the University of Illinois-Chicago, the Master of Science in Biomedical Communication at the University of Toronto, the Medical and Biological Illustration graduate program at Johns Hopkins, and the Graduate Certificate Program in Science Illustration at CSU Monterrey Bay. You can also learn programs like Illustrator and Photoshop, and even 3D modeling and animation programs like Maya and 3D Max, with a very reasonably priced subscription to Lynda.com. And if anyone would like more advice feel free to ask. 

The Art of Basic Science #7

For the latest installment of this series, my first attempt at stop-motion animation. It's pretty low budget! 

Inspired by:

Extensive horizontal gene transfer in cheese-associated bacteria. Bonham KS, Wolfe BE, Dutton RJ. Elife. 2017 Jun 23;6. pii: e22144. doi: 10.7554/eLife.22144.

Happy Birthday Tom Muir

I was commissioned by a former Muir Lab postdoc (not the one I'm married to) to create a poster as a gift for Tom's 50th birthday that was presented to him at his birthday party by all of his current and previous members. The commissioner had the idea to have Legos underneath structures of some of the proteins the lab has synthesized using expressed protein ligation. Tom Muir was one of my heroes as I was coming up through undergrad and grad school so I was honored to do it. 

The Art of Basic Science #6

This month I thought I'd try a New Yorker cartoon-style piece. My seventeen-year old niece who is crushing her pre-college summer biology course approves.

This was very loosely inspired by a Reflections piece I read about William Dowhan's career in the Journal of Biological Chemistry (in that he worked on lipids).

Seven-day cross-country catch-up: Day 6

Today we arrived in Boston. Ever since I left here 11 years ago I've missed it terribly, so when the hubs joined a small start-up that would ultimately lead us here, it was a dream come true. Before the move I borrowed "Make Way for Ducklings" from the library to read to the boys. As the moving truck was getting unloaded and I led the ducklings from Indiana today I thought of Mr. Mallard frantically getting the boys' rooms ready for them. The boys did not follow after me in a neat line, and no policeman helped me, but we survived. And they were very excited about their rooms.

While I'm feeling wistful I'll share this cover that I made for the Bundle lab, which is possibly the last one after years of making covers for them, as I'm losing this venerated client to a well deserved retirement. I felt a little better when I learned that my former lab-mate and current friend will be taking over the lab space in the fall to start his independent career.

Here is the paper the cover highlights:

Synthetic glycoconjugates characterize the fine specificity of Brucella A and M monoclonal antibodies.

Mandal SS, Ganesh NVSadowska JMBundle DR.

Org Biomol Chem. 2017 May 10;15(18):3874-3883. doi: 10.1039/c7ob00445a.

Seven-day cross-country catch-up: Day 5

Here's a JACS Table of Contents graphic that I made for the Pratt Lab at USC. They made a new metabolic chemical reporter that gets incorporated into O-GlcNAcylated proteins preferentially over cell surface glycoproteins, making it a handy tool for identifying more proteins that have the O-GlcNAc modification. Using it, they discovered not only that Caspase-8 gets modified with O-GlcNAc, but that the modification slows down the self-cleavage event that can lead a cell down the path to apoptosis. Which is very exciting, because apoptotic cells are so much fun to draw. And I guess also because they discovered a potential anti-apoptotic mechanism. Read all about it here:

The New Chemical Reporter 6-Alkynyl-6-deoxy-GlcNAc Reveals O-GlcNAc Modification of the Apoptotic Caspases That Can Block the Cleavage/Activation of Caspase-8.

Chuh KNBatt ARZaro BWDarabedian NMarotta NPBrennan CKAmirhekmat APratt MR.

J Am Chem Soc. 2017 May 31. doi: 10.1021/jacs.7b02213. [Epub ahead of print]

Seven-day cross-country catch-up: Day 4

We are still a couple of days from arriving in Boston but to follow on yesterday's theme of Harvard post docs, this piece was commissioned by a post doc (Rio Sugimura) in George Q. Daley's lab at Harvard Med School/Children's Hospital Boston for a press release on their recent Nature paper. They describe taking one big step closer to creating blood stem cells from a patient's own cells. Shown in the illustration are blood stem cells emerging from hemogenic endothelial cells. You can find all of the details here:

Haematopoietic stem and progenitor cells from human pluripotent stem cells. Sugimura RJha DKHan ASoria-Valles Cda Rocha ELLu YFGoettel JASerrao E7, Rowe RG1, Malleshaiah M8, Wong ISousa PZhu TNDitadi AKeller GEngelman ANSnapper SBDoulatov SDaley GQ.

Nature. 2017 May 25;545(7655):432-438. doi: 10.1038/nature22370. Epub 2017 May 17.