Which hiker are you?


I am definitely the one with the shoe untied and backpack unzipped. The hiking metaphor here is about varying levels of fitness for viral proteins accomplishing the task of protein folding. The fittest don't need any help from chaperones, while some are so unfit they get degraded before they even try folding. The idea for the hiking metaphor came from the first author of this paper, Angela Phillips, from Matthew Shoulders' lab at MIT. This was her original sketch for the concept:


In other news, we managed to have the O'Reilly Science Art holiday party of two this year. After a beer at the Cambridge Brewing Company, which I hadn't been to since I defended my thesis *mumblemumble* years ago, we saw Ladybird at the Kendall Square cinema. Because I am the boss. Or because the only showing of Star Wars The Last Jedi we could see started too late.

The Art of Basic Science #10

This painting came home from Kindergarten, and I was overcome with envy at this display of immune cells. Despite the fact that he had no idea that he was painting cells, I'd been out-science illustrated by my five year old, and so I thought this warranted a guest post by him again. 


The Art of Basic Science #9

Otto Warburg was a Nobel Prize-winning German biochemist who championed the hypothesis, which we now know as the Warburg Hypothesis, that cancer is caused by cells switching from the respiration of oxygen to the fermentation of sugar. This was in 1924. This criteria has largely been relegated to a correlation, since with the advent of molecular biology we learned about mutations in DNA. It has been a controversial topic, and for what it's worth, there has been a 10-fold increase in articles related to the Warburg Effect over the past ten years.

In this study (see reference below image), the authors link yeast cell fermentation to the oncogene Ras. They not only correlate an influx of glucose with accumulation of fructose 1,6-bisphosphate and activation of Ras, they show that fructose 1,6-bisphophate triggers activation of Ras. This supports the Warburg Effect within the modern context of at least one way in which we understand cancer to work. The image here incorporates glucose, fructose-1,6-bisphosphate, proliferating cells, and Ras into a portrait of Otto Warburg. Only after the completion of this illustration did I realize that he studied chemistry under Emil Fischer, known among other things for drawing sugars in, that's right, Fischer projections. Had he studied under English chemist Sir Norman Haworth then it would have been apropos indeed. So it goes.


Fructose-1,6-bisphosphate couples glycolytic flux to activation of Ras

Ken Peeters, Frederik Van Leemputte, Baptiste Fischer, Beatriz M. Bonini, Hector Quezada, Maksym Tsytlonok, Dorien Haesen, Ward Vanthienen, Nuno Bernardes, Carmen Bravo Gonzalez-Blas, Veerle Janssens, Peter Tompa, Wim Versées, and Johan M. Thevelein

Nat Commun. 2017; 8: 922.

Published online 2017 Oct 13. doi:  10.1038/s41467-017-01019-z

It's a banner day!

This week a paper came out in Science Translational Medicine that describes the use of hematopoietic stem and progenitor cells to treat Friedrich's Ataxia. Once they differentiate into mature microglia (see in yellow), they can actually transfer proteins that are missing in Friedrich's Ataxia to the host's cells. They also differentiate into other cells in other parts of the body to deliver these rescue proteins as well. Pretty amazing stuff. I made this image for the Cherqui Lab at UCSD, the authors of the study, and you can see the image (for now anyway) as the second in the scrolling banner images on both the Science Translational Medicine and Science homepages:




Brighter, stronger, tunier - new flourophores from the Lavis Lab

The Lavis Lab found that adding the four-membered functional group known as azetidines to the classic rhodamine dyes makes the brighter and more photostable. Even cooler, they found that by functionalizing the azetidines they could fine-tune the properties of the dyes, and gave them a whirl in cells too. 

The October installation of the Art of Basic Science is in the works. More soon!


The Art of Basic Science #8

This installment was inspired by the editorial illustrations of Rob Dobi (though this looks nothing like his), and the following paper from JACS, wherein the authors describe a cubane-based water oxidation catalyst. It is capable of oxygen evolution, a key component in artificial photosynthesis, which is a key component in playing nice with earth. 

Manganese-Cobalt Oxido Cubanes Relevant to Manganese-Doped Water Oxidation Catalysts.

Nguyen AISuess DLMDarago LEOyala PHLevine DSZiegler MSBritt RDTilley TD.

J Am Chem Soc. 2017 Apr 19;139(15):5579-5587. 


Can you really earn a living as a freelancer?

Alex Taylor of C&E News wrote this lovely piece about my path to scientific illustrator (click on image to go to full article), and as a result I have received some very nice e-mails from Ph.D. students who have been inspired by it. This was exactly the effect I hoped this article would have so I was delighted, but I also imagined that many people may have read this and wondered how feasible it really is to make a living doing this, and so I want to give the full story.

My annual income is in the ballpark of a postdoc salary, without the guaranteed monthly check (but also without the grueling hours). Having the safety net of a very supportive husband with a full time job has been key to this all going so swimmingly. Part of the reason for quitting teaching, in addition to the fact that I was having to turn away illustration work, was that it's hard enough to do two things well, but I found it nearly impossible to do three things well. So, when our first son was 18 months old, we looked at our finances and decided we could do it. And now four years later, with two kids aged 2 and 5, I'm very grateful for the flexibility this career allows. I am keenly aware that although I have worked very hard and made sacrifices for this career, I am lucky. It would have been much more of a struggle without the second income, and I thought that aspiring science illustrators ought to know that too. Freelance is not for the faint of heart, but I will say that at this point, I do not do any marketing, and I am simply fielding requests. I believe it would be more lucrative if I was more proactive, but I am steadily getting exactly the amount of work I want right now. This isn't due to a lack of ambition, but rather the constant fine-tuning of the ever-elusive work-family balance. 

That said, there are other more stable jobs in this industry than freelance. There are illustrators and illustration editors for scientific journals, graphic designers for biotech companies, scientific animation studios, textbook illustrators and much more. To help pave the way to some of these, there are masters programs like the Master of Science in Biomedical Visualization at the University of Illinois-Chicago, the Master of Science in Biomedical Communication at the University of Toronto, the Medical and Biological Illustration graduate program at Johns Hopkins, and the Graduate Certificate Program in Science Illustration at CSU Monterrey Bay. You can also learn programs like Illustrator and Photoshop, and even 3D modeling and animation programs like Maya and 3D Max, with a very reasonably priced subscription to Lynda.com. And if anyone would like more advice feel free to ask. 

The Art of Basic Science #7

For the latest installment of this series, my first attempt at stop-motion animation. It's pretty low budget! 

Inspired by:

Extensive horizontal gene transfer in cheese-associated bacteria. Bonham KS, Wolfe BE, Dutton RJ. Elife. 2017 Jun 23;6. pii: e22144. doi: 10.7554/eLife.22144.

Happy Birthday Tom Muir

I was commissioned by a former Muir Lab postdoc (not the one I'm married to) to create a poster as a gift for Tom's 50th birthday that was presented to him at his birthday party by all of his current and previous members. The commissioner had the idea to have Legos underneath structures of some of the proteins the lab has synthesized using expressed protein ligation. Tom Muir was one of my heroes as I was coming up through undergrad and grad school so I was honored to do it. 

The Art of Basic Science #6

This month I thought I'd try a New Yorker cartoon-style piece. My seventeen-year old niece who is crushing her pre-college summer biology course approves.

This was very loosely inspired by a Reflections piece I read about William Dowhan's career in the Journal of Biological Chemistry (in that he worked on lipids).

Seven-day cross-country catch-up: Day 6

Today we arrived in Boston. Ever since I left here 11 years ago I've missed it terribly, so when the hubs joined a small start-up that would ultimately lead us here, it was a dream come true. Before the move I borrowed "Make Way for Ducklings" from the library to read to the boys. As the moving truck was getting unloaded and I led the ducklings from Indiana today I thought of Mr. Mallard frantically getting the boys' rooms ready for them. The boys did not follow after me in a neat line, and no policeman helped me, but we survived. And they were very excited about their rooms.

While I'm feeling wistful I'll share this cover that I made for the Bundle lab, which is possibly the last one after years of making covers for them, as I'm losing this venerated client to a well deserved retirement. I felt a little better when I learned that my former lab-mate and current friend will be taking over the lab space in the fall to start his independent career.

Here is the paper the cover highlights:

Synthetic glycoconjugates characterize the fine specificity of Brucella A and M monoclonal antibodies.

Mandal SS, Ganesh NVSadowska JMBundle DR.

Org Biomol Chem. 2017 May 10;15(18):3874-3883. doi: 10.1039/c7ob00445a.

Seven-day cross-country catch-up: Day 5

Here's a JACS Table of Contents graphic that I made for the Pratt Lab at USC. They made a new metabolic chemical reporter that gets incorporated into O-GlcNAcylated proteins preferentially over cell surface glycoproteins, making it a handy tool for identifying more proteins that have the O-GlcNAc modification. Using it, they discovered not only that Caspase-8 gets modified with O-GlcNAc, but that the modification slows down the self-cleavage event that can lead a cell down the path to apoptosis. Which is very exciting, because apoptotic cells are so much fun to draw. And I guess also because they discovered a potential anti-apoptotic mechanism. Read all about it here:

The New Chemical Reporter 6-Alkynyl-6-deoxy-GlcNAc Reveals O-GlcNAc Modification of the Apoptotic Caspases That Can Block the Cleavage/Activation of Caspase-8.

Chuh KNBatt ARZaro BWDarabedian NMarotta NPBrennan CKAmirhekmat APratt MR.

J Am Chem Soc. 2017 May 31. doi: 10.1021/jacs.7b02213. [Epub ahead of print]

Seven-day cross-country catch-up: Day 4

We are still a couple of days from arriving in Boston but to follow on yesterday's theme of Harvard post docs, this piece was commissioned by a post doc (Rio Sugimura) in George Q. Daley's lab at Harvard Med School/Children's Hospital Boston for a press release on their recent Nature paper. They describe taking one big step closer to creating blood stem cells from a patient's own cells. Shown in the illustration are blood stem cells emerging from hemogenic endothelial cells. You can find all of the details here:

Haematopoietic stem and progenitor cells from human pluripotent stem cells. Sugimura RJha DKHan ASoria-Valles Cda Rocha ELLu YFGoettel JASerrao E7, Rowe RG1, Malleshaiah M8, Wong ISousa PZhu TNDitadi AKeller GEngelman ANSnapper SBDoulatov SDaley GQ.

Nature. 2017 May 25;545(7655):432-438. doi: 10.1038/nature22370. Epub 2017 May 17.

Seven-day cross-country catch-up: Day 3

This is a project I just finished up a couple of weeks ago for a young up and coming assistant professor who came from a post doc at Harvard and Mass. General Hospital and is starting his independent career at Rutgers. These illustrations were made for his website, where you can find the captions and more details of his research program: www.izgulab.com

Seven-day cross-country catch-up: Day 2

Today I'm sharing some PowerPoint slides I made for Prof. Shana Sturla at ETH. Since we had plenty of time I really got to sink my teeth into this project and after some great discussions we came up with these new slides for her talks. In related news, another client recently asked me for a gif of illustrations I made for them. So now I make gifs, evidently. 

Seven-day cross-country catch-up: Day one

Because we are in the process of moving from San Diego to Boston and because my computer is in a truck trailer somewhere in the middle of the country, I'm doing something a little different in lieu of The Art of Basic Science this month. I realized I've been remiss in posting actual client work so I'm going to post something every day for a week to share some of the projects I've been doing over the past few months. 

This is another cover I did for the Mankad Lab at University of Illinois at Chicago, highlighting the power of bimetallic systems in selectivity. Here it is used to favor one transformation over another. You can read more about it here:

Fundamental organometallic chemistry under bimetallic influence: driving β-hydride elimination and diverting migratory insertion at Cu and Ni.

Mazzacano TJ1, Leon NJWaldhart GWMankad NP.

Dalton Trans. 2017 May 2;46(17):5518-5521. doi: 10.1039/c6dt04533b

The Art of Basic Science will return in July, and I'm feeling particularly inspired after I finally made it to LACMA (Los Angeles County Museum of Art) the day before I left California. 

The Art of Basic Science #5

For the fifth installment of this series, I chose a paper from the labs of Donna Blackmond and Alan Aspuru-Guzik in the current issue of ACS Central Science. It deals with the age-old question of how chirality arose in the origins of life, and finds that chiral pentose sugars are capable of tipping the scales toward specific enrichment of L-amino acid precursors. I won't go into the details since that isn't what this series is for, but you can see for yourself here:

Chiral Sugars Drive Enantioenrichment in Prebiotic Amino Acid Synthesis. Alexander J. Wagner, Dmitry Yu. Zabarev, Alan Aspuru-Gusik, and Donna G. Blackmond. ACS Cent. Sci., 2017, 3 (4), pp 322–328.

Rather, it is just meant to be a celebration of basic science, the anything-but-basic folks who dedicate themselves to the craft, and, in this case, open access to it, thanks to journals like ACS Central Science. If you look at it long enough you should see two distinct alpha helices along with ribose, one of the featured (and notably pre-biotically plausible) stars of the show. If you look at it even longer a 3D dolphin will pop out. Oh no wait that's magic eye posters. Never mind.

If at first you don't succeed, try again three and a half years later

The recent Chemical Science cover below was developed from a concept I used for candidate cover art three and a half years ago with the same client, the Mankad Lab at The University of Illinois - Chicago. It was originally made for a JACS cover (see bottom image), but as I now understand, JACS editors generally seem to prefer eye-catching images of chemical structures, with minimal interest in the metaphorical, whimisical, or comical. My client had the idea to reprise it and lo and behold it worked!

The Art of Basic Science #4

On this April Fool's Day I decided to feature a guest post for the fourth installment of this series. The guest is my 5-year old son, who stated his intention to grow up to be a scientist, and then someone who draws science to explain it to other people. This was quite a departure from fire-fighting astronaut, but I suspect he began to realize that the lack of oxygen in space might impact his employment prospects. 

I sometimes take advantage of time spent "coloring" with the kids to sketch out ideas for projects. But it was just a week ago that my 5-year old wanted to start copying what I was drawing. Which is how he came to be a guest illustrator for this series. This drawing comprises DNA polymerases, nucleotide triphosphates, methylated template DNA, PCR products (both pictorial and in-gel), and the hydrogen-bonding pattern of a DNA adduct to a cognate non-natural nucleoside. My sketches are pretty rough so I must admit that it isn't a very big stretch from my version. 

This installment is inspired by work in Shana Sturla's lab at ETH.